skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morales, Anasilvia Salazar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Computational analysis methods and machine learning techniques introduce innovative ways to capture classroom interactions and display data on analytics dashboards. Automated classroom analytics employ advanced data analysis, providing educators with comprehensive insights into student participation, engagement, and behavioral trends within classroom settings. Through the provision of context-sensitive feedback, automated classroom analytics systems can be integrated into the evidence-based pedagogical decision-making and reflective practice processes of faculty members in higher education institutions. This paper presents TEACHActive, an automated classroom analytics system, by detailing its design and implementation. It outlines the processes of stakeholder engagement and mapping, elucidates the benefits and obstacles associated with a comprehensive classroom analytics system design, and concludes by discussing significant implications. These implications propose user-centric design approaches for higher education researchers and practitioners to consider. 
    more » « less